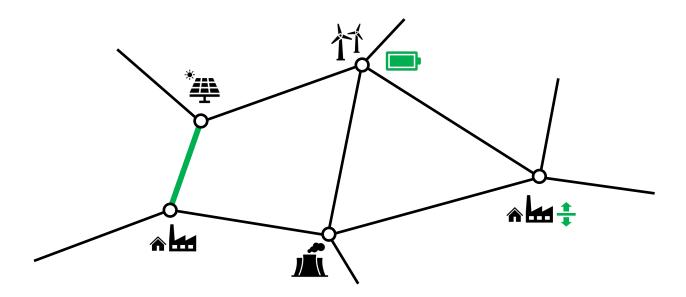


16/02/2023 – EnergyVille (Genk, BE)

Network expansion planning with FlexPlan.jl

Matteo Rossini RSE


Summary

- 1. The FlexPlan project and FlexPlan.jl
- 2. Overview of models
- 3. Insight into the implementation
- 4. T&D decoupling heuristics
- 5. Benders decomposition


The FlexPlan project

FlexPlan

Aim: establish a new grid planning methodology considering the opportunity to introduce new storage and flexibility resources in T&D grids as an alternative to conventional network expansion.

FlexPlan software components

FlexPlan.jl is a "container" package

FlexPlan

Original content in FlexPlan.jl

problem definition stochastic network expansion planning

network components storage, flexible loads

power flow models simplified DistFlow (w. OLTCs and linearized apparent power bounds)

data structures for stochastic/multiperiod optimization

grid interconnection model T&D coupling through generators

algorithms T&D decoupling heuristic, Benders decomposition

test networks 2 transmission, 2 distribution (w. candidates and stochastic time series)

I/O functions for data import/export and plotting

Cost minimization problem

operation periods hour constant continuous variables (power, voltage, ...)

Sets scenarios scenario different timeseries for renewables and demand

planning periods year constant binary variables (investment decisions)

Objective function
$$\min \sum_{y \in Y} \left([CAPEX]_y + \sum_{s \in S} \pi_s \sum_{t \in T} [OPEX]_{t,s,y} \right)$$

new **lines**, **transformers**, **converters**new **storage** devices
flexibilization of **demand**

generation: cost, curtailment **demand**: shifting, reduction, curtailment

scenario probability

Storage model

$$E_{b,s,t,y} = (1-\lambda_b)^{\Delta t} E_{b,s,t-1,y} + \Delta t \left(\eta_b^{abs} P_{b,s,t,y}^{abs} - \frac{P_{b,s,t,y}^{th}}{\eta_b^{inj}} + \xi_{b,s,t,y} \right)$$
 energy stored at time t power absorbed power injected power of at time $t-1$ from network into network external process

Constraints

- bounds on stored energy and absorbed/injected power
- fixed energy at beginning of planning horizon
- lower bound for energy at end of planning horizon

No charge/discharge exclusivity constraint

Flexible load model

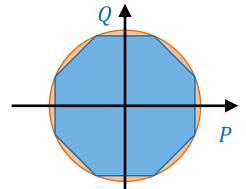
$$P_{u,s,t,y}^d = P_{u,s,t,y}^{ref} + P_{u,s,t,y}^{sh,up} - P_{u,s,t,y}^{sh,dn} - P_{u,s,t,y}^{red} - P_{u,s,t,y}^{curt}$$
absorbed reference upward and downward voluntary involuntary power power demand shift reduction curtailment

Constraints

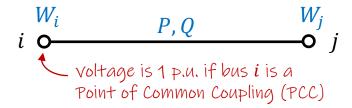
- non-negative absorbed power
- bounds on demand shift and voluntary reduction as fraction of reference power
- sum of upward and downward demand shifts rebalanced periodically

Simplified DistFlow model

linear approximation of branch flow model for distribution networks (requires radial topology)


Variables

buses: squared voltage magnitude (W)


branches: active and reactive power (P, Q)

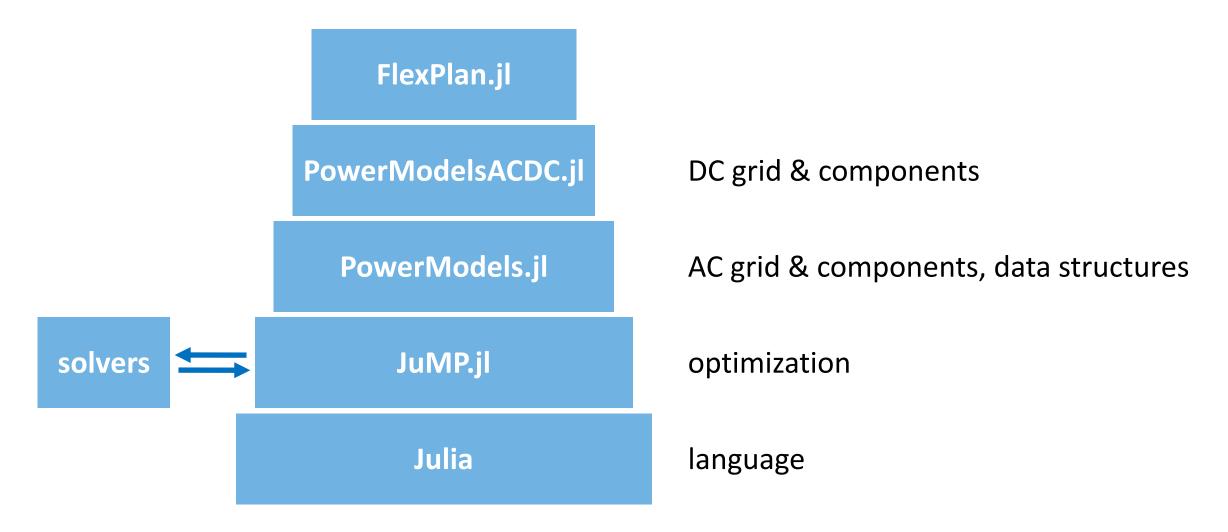
OLTCs: inverse squared transformation ratio (ρ)

Branch apparent power bound

linearized as regular octagon inscribed in $P^2 + Q^2 \le S^2$ circle

Voltage drop constraint

line
$$W_i - W_i = 2(rP + xQ)$$


transformer connected to PCC

$$\frac{1}{\tau^2} - W_j = 2(rP + xQ)$$

OLTC connected to PCC

$$\rho - W_j = 2(rP + xQ)$$

Software stack

Input

FlexPlan

Static data

Matpower file with custom extensions

```
function mpc - cased

"Converted on - '1':

"The proclamation - '1':
```

```
Time (CET), Residential load [Me], Industrial load [Me], et.al. 2239 98129 - et.al. 2235 9815, 44294, 44290 91.0.1.2029 98129 - et.al. 2235 9815, 44294, 44290 91.0.1.2029 98125 - et.al. 2235 9815, 44294, 44290 91.0.1.2029 98125 - et.al. 2239 98126 - et.al. 2239 98126, 44294, 44594 - et.al. 2239 98126 - et.al. 2239 98126, 44294, 44596 98126 - et.al. 2239 98126, 44294, 44596 98126 - et.al. 2239 98126, 44294, 44294, 44596 98126 - et.al. 2239 98126, 44294, 44294, 44297, 44294 - et.al. 2239 98126 - et.al. 2239 98126, 44492, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 44297, 4
```

Time series

Any file

```
data = parse_file(file; kwargs...)
scale_data!(data; kwargs...)
add_dimension!(data, name, ...)
```

Single-network dictionary (PowerModels-like)

user-provided function

Dictionary with vector values

```
make_multinetwork(data, time_series; kwargs...)
```

Multinetwork dictionary (PowerModels-like)

Sample networks: https://github.com/Electa-Git/FlexPlan.jl/tree/master/test/data

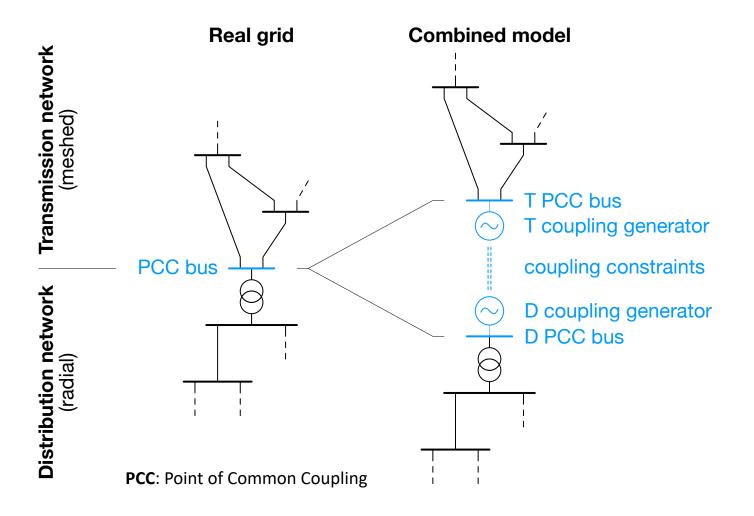
Dimensions

scenario

FlexPlan

Data is stored as Dict{Int,Any}...

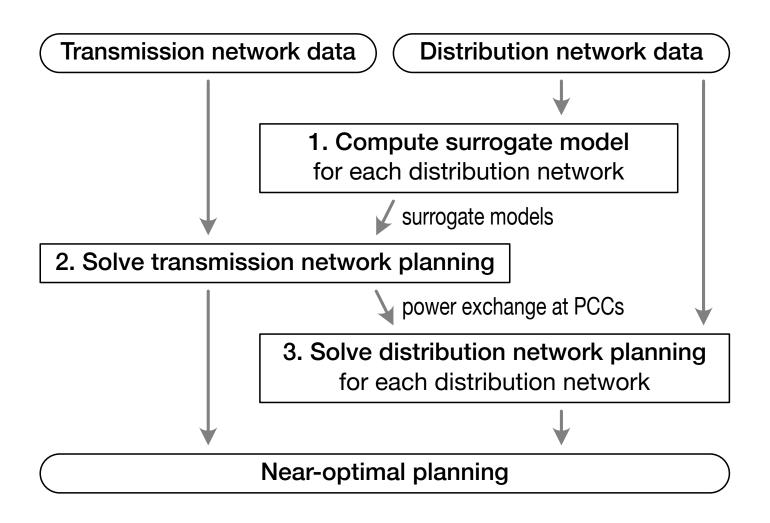
...but accessed as a multidimensional array


```
add dimension!(data, :hour, 24)
                                                                 nw ids(pm; kwargs...)
                                                                 similar ids(pm, n; kwargs...)
          add_dimension!(data, :scenario, Dict(
                                                                 similar_id(pm, n; kwargs...)
                         1 => Dict("probability"=>0.7),
                                                                 first_id(pm, n, dimension...)
                         2 => Dict("probability"=>0.3)))
                                                                 last id(pm, n, dimension...)
                                                                 prev id(pm, n, dimension)
          add_dimension!(data, :year;
                                                                 prev ids(pm, n, dimension)
                         metadata=Dict("scale factor"=>10))
                                                                 next id(pm, n, dimension)
                                                                 next_ids(pm, n, dimension)
                                                                 and many other functions
hour
```

How to run optimizations

```
import FlexPlan as FP
     import HiGHS
     optimizer = FP.optimizer with attributes(HiGHS.Optimizer, "output flag"=>false)
 4
     sn data = FP.parse file("my matpower file.m")
    FP.scale data!(sn data)
    FP.add dimension!(sn data, :hour, 24)
    FP.add_dimension!(sn_data, :scenario, Dict(1=>Dict("probability"=>0.7), 2=>Dict("probability"=>0.3)))
 8
     FP.add dimension!(sn data, :year; metadata = Dict("scale factor"=>10))
10
11
     time series = my function to load time series()
12
     mn data = FP.make multinetwork(sn data, time series)
13
14
     setting = Dict("output" => Dict("branch flows"=>true))
     result = FP.simple stoch flex tnep(mn data, FP.BFARadPowerModel, optimizer; setting)
15
```

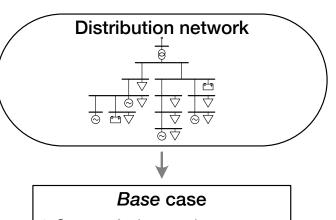
Combined T&D model



- Different power flow models for T&D
- ✓ Uses only standard network components
- ✓ Coupling constraints do not depend on the power flow model
- X Voltage variables are not coupled

Suitable for planning, not for operation

The combined system is passed to functions as two arguments: a Dict for transmission grid and a Vector{Dict} for distribution grids



Surrogate model components:

- one generator
- one storage device
- one flexible load

with parameters such that:

- feasibility *implies* feasibility in original model
- cost *approximates* cost in original model

- 1. Set cost for imported energy
- 2. Compute optimal planning (MILP)

- 1. Fix investment decisions
- 2. Remove intertemporal constraints
- 3. For each period and scenario:
 - a. set monotonicity constraints
 - b. maximize P at PCC (LP)
 - c. fix P at PCC
 - d. minimize OPEX (LP)

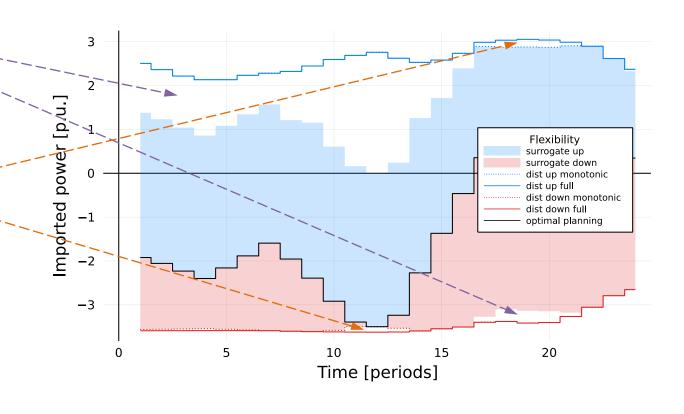
Downward case

- 1. Fix investment decisions
- 2. Remove intertemporal constraints
- 3. For each period and scenario:
 - a. set monotonicity constraints b. maximize *P* at PCC (LP)
 - f.. D -t DOO
 - c. fix P at PCC
 - d. minimize OPEX (LP)

FlexPlan

Surrogate model assumptions

Effects on power exchange at PCC

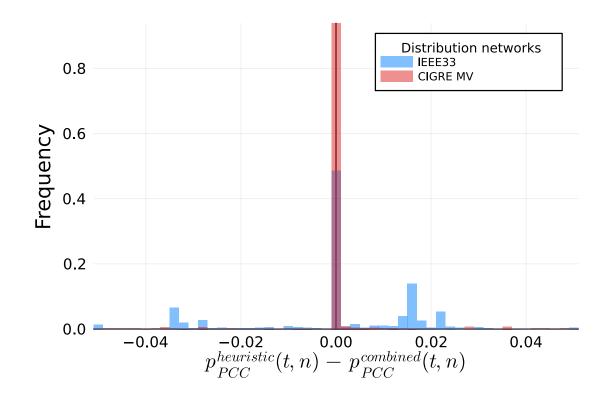

Independence of components

Generator, storage device and load can be used independently by transmission.

Monotonicity of power variations

A variation in power exchanged with transmission produces a variation of the same sign in components.

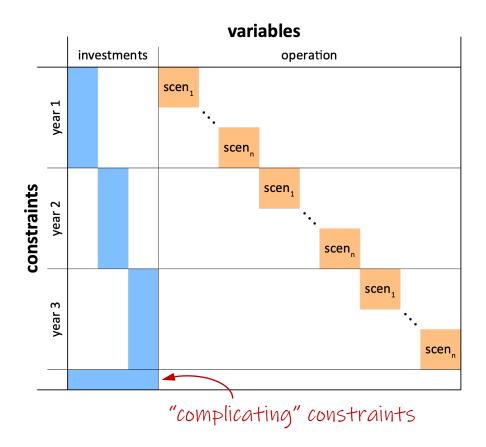
Example: if imported power increases, then the load cannot absorb less.



Test: attach to a transmission network (case67) a variable amount N_d of distribution networks (either IEEE33 or CIGRE MV)

PERFORMANCE COMPARISON OF COMBINED MODEL AND DECOUPLING HEURISTIC

N_d	binary - variables	CPU time			relative cost
		combined model [s]	decoupling heuristic [s]	ratio	increase
	case	67 with N_d IE	EEE33 distribution	networks	
1	83	38	21	0.553	$-1.1 \cdot 10^{-5}$
4	158	148	25	0.169	$6.0 \cdot 10^{-7}$
16	458	1139	41	0.036	$1.4 \cdot 10^{-6}$
64	1658	4228	87	0.021	$6.6 \cdot 10^{-5}$
case67 with N_d CIGRE MV distribution networks					
1	88	39	23	0.590	$-5.3 \cdot 10^{-15}$
4	178	79	20	0.253	$6.2 \cdot 10^{-5}$
16	538	210	30	0.143	$5.3 \cdot 10^{-15}$
64	1978	6479	59	0.009	$4.1 \cdot 10^{-4}$

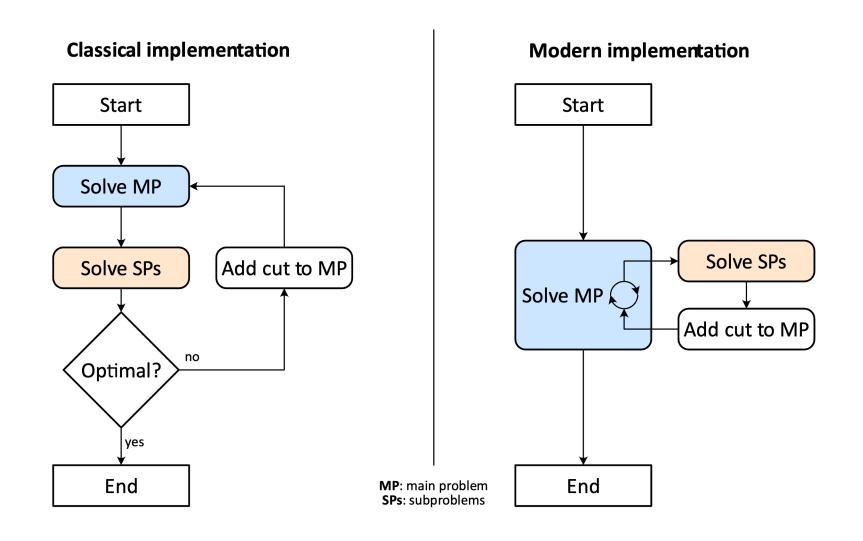

Adopts a transmission-follows approach (distribution investments decided in distribution, used also by transmission)

- ✓ Fast w.r.t. combined model typical speedup: 10 ÷ 100 x
- ✓ Near-optimal result typical relative cost increase: < 10⁻⁴
- ✓ Good solution quality typical power deviation at PCCs: < 1%

X No voltage information shared between T&Das in combined T&D model

FlexPlan

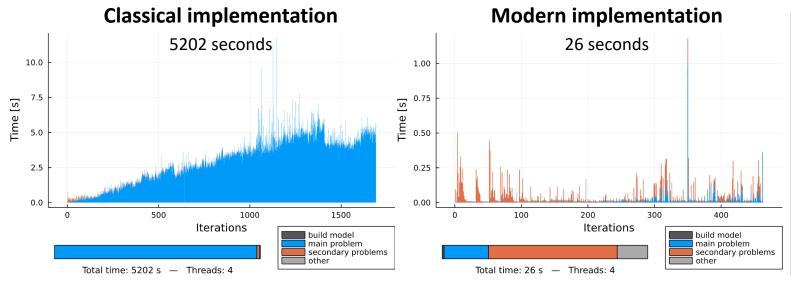
The problem matrix has a block structure



FlexPlan

Benders algorithm (1962) applied to planning problem

Repeat until convergence:


- 1. Solve main problem
 - optimize investment (binary) variables
- 2. Solve subproblems (one per year/scenario)
 - fix investment decisions
 - optimize operation (continuous) variables
- 3. Add cut to main problem
 - cuts provide a lower bound of the operation cost

Test: comparison of solve time

Main problem: 357 binary variables and 705 constraints initially 9 subproblems: 2514 continuous variables and 8540 constraints each

Key features of implementation

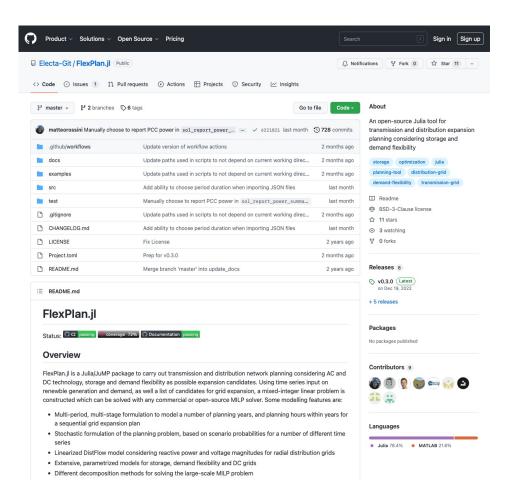
- ✓ Subproblems are not dualized
 - Variant of original Benders decomposition
- ✓ Multithreaded
 - Main problem: multithreaded solver
 - Subproblems: solved in parallel (multithread), with singlethreaded solvers

X Basic implementation

• No regularization applied

Performance of Benders decomposition implementation in FlexPlan.jl is very case-dependent. Consider using the Benders decomposition frameworks included in some solvers (SCIP, CPLEX) instead.

Functions for inspection of results


Outputs:

- **DataFrame** (returned value)
- numerical results as CSV files
- plots in any format supported by Plots.jl

These functions are not part of FlexPlan module to avoid unwanted dependencies. Include them with:

```
import FlexPlan as _FP
const _FP_dir = dirname(dirname(pathof(_FP)))
include(joinpath(_FP_dir,"test/io/sol.jl"))
and import required packages.
```

References

https://github.com/Electa-Git/FlexPlan.jl

To get started, see /examples/ and /test/scripts/ directories.

Documentation: https://electa-git.github.io/FlexPlan.jl/dev

FlexPlan.jl package

H. Ergun, M. Rossini, M. Rossi

FlexPlan.jl – An open-source Julia tool for holistic transmission and distribution grid planning accepted to OSMSES 2023 – Aachen (DE), 27-29/03/2023

T&D decoupling heuristic

M. Rossini, M. Rossi, D. Siface

A surrogate model of distribution networks to support transmission network planning submitted to CIRED 2023 – Rome (IT), 12-15/06/2023

Contact authors

Hakan Ergun – hakan.ergun@kuleuven.be Matteo Rossini – matteo.rossini@rse-web.it

(full list of authors on repository website)

FlexPlan

FlexPlan-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.